Heterocyclic compounds Dr. Dawood S. Abid

Syllabus

Introduction and

- > Heterocyclic compound: Definition.
- Uses and Relevance of heterocyclic compounds.
- Classes of heterocycles.
 - π-Deficient aromatic heterocycles
 - π-Excedent aromatic heterocycles
 - Other aromatic heterocycles
 - ✓ Non-aromatic heterocycles
- Nomenclature of heterocyclic compounds

Synthesis of heterocyclic compounds

Reaction of heterocyclic compounds

REFERENCES

- "Advances in Heterocyclic Chemistry", Vols. 1 to 27, A. R. Katritzky and J. A. Boulton, (Eds.), Academic Press, New York (1963-1980).
- "The Chemistry of Heterocyclic Compounds", Vols. 1 to 29, A. Weissberger, (Ed.), Wiley Interscience, New York (1950 to 1975).
- "Physical Methods in Heterocyclic Chemistry", Vols. 1 to 5, A. R. Katritzky, (Ed.), Academic Press, New York (1963 to 1973).
- "Heterocyclic Chemistry", Vols. 1 to 9, R. C. Elderfield, (Ed.), Wiley, New York (1950 to 1967).
- J. A. Joule and G. F. Smith, Heterocyclic Chemistry, Van Nostrand Reinhold Co., 2nd ed., London (1978).
- O. Büchardt, (Ed.), Photochemistry of Heterocyclic Compounds, John Wiley, New York (1976).
- R. S. Chan, Introduction to Chemical Nomenclature, Butterworths, London (1974).
- Rodd's Chemistry of Carbon Compounds, Vol. IV, Part A, B, S. Coffey, (Ed.), Elsevier, London (1973).
- C. R. C. Handbook of Chemistry and Physics, R. C. Weast and M. J. Astle, (Eds.), C. R. C. Press, Inc., 63rd ed. Florida U. S. A. (1983).
- J. H. Fletcher, O. C. Dermer and R. B. Fox, Nomenclature of Organic Compounds, Principles and Practice, American Chemical Society, Washington, D. C., Adv. Chem. Ser.

Chapter 1

INTRODUCTION

General concepts about heterocyclic chemistry

- Heterocyclic compound: Definition.
- Uses and Relevance of heterocyclic compounds.
- Classes of heterocycles.
 - π-Deficient aromatic heterocycles
 - π-Excedent aromatic heterocycles
 - ✓ Other aromatic heterocycles
 - ✓ Non-aromatic heterocycles
- Nomenclature of heterocyclic compounds

HETEROCYCLIC COMPOUNDS: DEFINITION

CYCLIC COMPOUNDS

ISOCYCLIC COMPOUNDS: Cyclic compounds in which the cycle is formed by atoms of the same element

Benzene

Pentazole

Carbocycles: Isocyclic compounds formed exclusively by carbon atoms

Benzene

Cyclopentadiene

Cycloheptane

HETEROCYCLIC COMPOUNDS: Cyclic compounds which are formed by atoms of at least two different elements

Inorganic heterocycles: Heterocycles which do not contain any carbon atom on the cyclic scaffold

Organic heterocycles: Heterocycles which contain at least one carbon atom on the cyclic scaffold

Heteroatom Piperidine

HETEROCYCLIC COMPOUNDS: DEFINITION

ORGANIC HETEROCYCLES

Most common heteroatoms: Nitrogen (the most abundant and important), Oxygen and Sulfur (rather abundant)

Structure

Ball and stick

Pyridine

Space filling

Structure

Ball and stick

Space filling

Furane

Other heteroatoms: Se, Te, P, As, Sb, Bi, Si, Ge, Sn, Pb, B (less common not easily found among natural products but useful as synthetic intermediates and/or chemical

reagents)

Lawesson Reagent (Used for sulfur transfer reactions)

Metal atoms: Pd, Ru, Co... etc. (Metalacycles)

An intermediate in the OsO₄mediated dihydroxylation of alkenes

USES AND RELEVANCE OF HETEROCYCLIC COMPOUNDS

9 January 2019

6

USES AND RELEVANCE OF HETEROCYCLIC COMPOUNDS

Food additives and health-care consumables:

Abrox® (Chanel N.5)

Saccharin (sweetener)

Structural Biomolecules:

Carbohydrates

Nucleic acids

Vitamins

Several aminoacids and proteins

Co-enzimes (porphirin, chlorophile....

And so on...

Heterocycles can be classified into three general groups

- > Saturated
- Partially saturated
- > Aromatic

SATURATED HETEROCYCLES

X=0: Oxepane X=NH: Azepane

X=0: Oxane X=S: Thiane X=NH: Piperidine

X=0: 1,4-Dioxane X=S: 1,4-Dithiane X=NH: Piperazine

X=0: tetrahydrofurane X=S: tetrahydrothiophene X=NH: Pyrrolidine

X=0: Oxetane X=NH: Azetidine

→ Non-planar structure (sp³ hybridization of C atoms and heteroatoms)

Different conformations

VS

- > Reactivity: Similar behaviour than that of the corresponding open-chain analogues
 - Oxane like dialkylethers
 - Thiane like dialkylsulfides
 - Piperidine like a secondary amine

Consider bond-angle strain and lack of conformational freedom for reactivity

(e.g. pyrrolidine is more basic than Et,NH)

PARTIALLY SATURATED HETEROCYCLES

→ C-C double bond: React essentially as alkenes

X=O: 3,4-Dihydro-2H-pyrane X=NH: 1,2,3,4-Tetrahydropyridine

"Standard" alkene
Typical alkene reactivity
(halogenation, hydroalogenation,
hydration, hydroboration,
oxymercuriation, cycloadditions...

X=O: 3,6-Dihydro-2H-pyrane X=NH: 1,2,3,6-Tetrahydropyridine

→ C-Heteroatom double bond: React essentially as carbonyls, azomethine or related derivatives

X=O+: 2,3,4-Tetrahydropyrilium cation X=N: 2,3,4,5-Tetrahydropyridine

AROMATIC HETEROCYCLES

- Aromaticity confers high stability (lower reactivity)
 - Difficult to oxidize or reduce
 - REACTIVITY: Aromatic electrophilic substitution (S_EAr)/Aromatic nucleophilic substitution (S_NAr)/ or aromatic radical substitutions (S_EAr) (addition/elimination mechanism retaining aromaticity)
- Aromaticity: Hückel rule
 - For a molecule to be aromatic it must:
 - ✓ Be cyclic
 - ✓ Have a p-orbital on every atom in ring.
 - ✓ Be planar
 - ✓ Posses 4n+2
 electrons (n = any integer)

Benzene 6π e⁻ (4x1 + 2)

Pyridine 6π e⁻ (4x1 + 2)

Naphtalene $10\pi e^{-}(4x2 + 2)$

Erich Hückel (1886-1980)

Furane 6π e⁻ (4x1 + 2)

Cyclopentadienyl anion $6\pi e^{-(4x1 + 2)}$

Cyclopropenyl cation $2\pi e^{-(4x0+2)}$

[14]-Annulene 14π e⁻ (4x3 + 2)

AROMATIC HETEROCYCLES

π-Deficient aromatic heterocycles:

These result from replacing one or more CH units from an aromatic hydrocarbon with (one) heteroatom(s).

Pyridine

Pyrilium cation

Pyrimidine

Quinoline

π-Excedent aromatic heterocycles:

These result from replacing one or more CH=CH units from an aromatic hydrocarbon with (one) heteroatom(s).

Furane

Pyrrol

Pyrimidine

Indole

π-DEFICIENT AROMATIC HETEROCYCLES

PYRIDINE VS BENZENE

SIMILARITIES

- Both fullfil Hückel rule
- All atoms in the ring are sp²-hybridized
- σ-bond skeleton formeb by sp²-sp² orbital interactions
- π-Framework formed by a single electron of each atom at p, orbital

DIFFERENCES

- Nitrogen lone pair on sp2 orbital
- Lone pair lies perpendicular to the molecule axis (coplanar with the ring)
- Different electronegativities of C and N distort electronic distribution

Distortion of electronic distribution:

Nitrogen is more electronegative than carbon and attracts electrons, therefore increasing the electron density on N and C3 and C5 (>1), while electron density is decreased on C2, C4 and C6 (<1).

π-DEFICIENT AROMATIC HETEROCYCLES

PYRIDINE VS BENZENE

This can be explained in terms of resonance structures

These forms have the less contribution (positive charge on N)

Resonance hybrid

π -DEFICIENT AROMATIC HETEROCYCLES

π-DEFICIENT AROMATIC HETEROCYCLES

PYRIDINE VS BENZENE

Molecular orbitals of Benzene vs Pyridine

HOMO: π-MO's are lower in energy in pyridine compated with benzene (π-defficient)

LUMO: π*-MO's are lower in energy in pyridine compated with benzene (more tendency to accept electrons, more reactive towards aromatic electrophilic substitution)

9 January 2019

OTHER A-DEFICIENT HETEROCYCLES

→ One heteroatom (pyridine-like):

Behave essentially like pyridine. Differences arise from the different electronegativity of the heteroatom

Pyridine

Pyrilium cation

Phosphinine

Siline

O* is more electronegative than N (Carbon atoms at ring more electron-deficient) P and Si are less electronegative than N (Carbon atoms at ring less electron-deficient)

→ Two or more heteroatoms:

The higher the number of heteroatoms on the structure, the more electron-deficient the heterocycle will become

Pyridine

Pyridazine

Pyrimidine

Pyrazine

1,3,5-Triazine

π-EXCEDENT AROMATIC HETEROCYCLES

These result from replacing one or more CH=CH units from an aromatic hydrocarbon with (one) heteroatoms). Isoelectronic with cyclopentadienyl anion

Cyclopentadienyl anion

Furane

Pyrrol **FEATURES**

Thiophene

Indole

- All atoms in the ring are sp2-hybridized
- σ-bond skeleton formed by sp²-sp² orbital interactions
- π-Framework formed by a single electron of each atom at p, orbital
- The heteroatom lone pair that participates on the aromatic π-system lies perpendicular to the molecule axis (coplanar with the ring)
- Heteroatom bonds to adjacent atoms by single bonds
- Electron rich ring system ELECTRON DENSITY: Six π-electrons shared by five atoms
- ELECTRON DENSITY: The carbon atoms of the ring have more electron density compared with benzene but less than the heteroatom

1.000 1,000 1,000 1,000

π-EXCEDENT AROMATIC HETEROCYCLES

ELECTRON DENSITY MAP

Can be understood in terms of resonance structures

→ Pyrrol:

→ Furane:

 δ - δ - δ - δ - δ - δ -Resonance hybrid

→ Thiophene:

- > Thiophene has a more aromatic character (contribution of additional resonance structure without charge separation)
- Furane has the less aromatic character (unstability of resonance structures with a possitively charged oxygen atom.

19

π-EXCEDENT AROMATIC HETEROCYCLES

PYRROL VS CYCLOPENTADIENYL ANION

- > HOMO in pyrrole is less energetic (more accessible and therefore with more tendency to donate electrons: x-excedent)
- GEOMETRY OF HOMO: Largest coeficients at C2 and C5: More reactive possitions